metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bobby L. Barker, David Aubry, Frank R. Fronczek, Steven F. Watkins* and George G. Stanley

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

Correspondence e-mail: swatkins@lsu.edu

Key indicators

Single-crystal X-ray study T = 120 KMean σ (I–Mg) = 0.001 Å R factor = 0.035 wR factor = 0.068 Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexakis(*N*,*N*-dimethylformamide-*κO*)magnesium tetrachloromagnesate

The crystallographically independent unit of the title compound, $[Mg(C_3H_7NO)_6][MgCl_4]$, consists of two sixcoordinate magnesium dications and two four-coordinate magnesium dianions. The two cations are quasi-octahedral and statistically equivalent [average Mg-O = 2.07 (3) Å] and the anions are quasi-tetrahedral and statistically equivalent [average Mg-Cl = 2.334 (11) Å].

Comment

The asymmetric unit of the title compound consists of two cations and two anions. Equivalent bond lengths and bond angles of the metal-bonded *N*,*N*-dimethylformamide (DMFA) ligands are statistically equal to one another and are consistent with values reported for the $[(DMFA)_6Mg]^{2+}$ dication by Krautscheid & Vielsack (1999). Other DMFA–Mg complexes have been reported by Hollander *et al.* (1973) and Adams *et al.* (2005). The bond lengths and angles in the $[MgCl_4]^{2-}$ dianion do not differ significantly from the values reported by Sobota *et al.* (1986), Sobota & Szafert (1996), and Pavanello *et al.* (1994).

Experimental

Crystals of the title compound were grown from dimethylformamide solution. Their preparation is discussed by Barker (2005).

Crystal data

$[Mg(C_3H_7NO)_6][MgCl_4]$	$D_x = 1.301 \text{ Mg m}^{-3}$
$M_r = 629$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 7510
a = 13.905 (2) Å	reflections
b = 12.108 (3) Å	$\theta = 2.5 - 27.5^{\circ}$
c = 19.079 (3) Å	$\mu = 0.45 \text{ mm}^{-1}$
$\beta = 90.717 \ (15)^{\circ}$	$T = 120 { m K}$
$V = 3211.9 (10) \text{ Å}^3$	Fragment, colorless
Z = 4	$0.35 \times 0.25 \times 0.1 \text{ mm}$

© 2006 International Union of Crystallography All rights reserved Received 14 March 2006 Accepted 27 March 2006

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler ω scans with κ offsets Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor 1997) T_{min} = 0.929, T_{max} = 0.956

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.068$ S = 1.027677 reflections 673 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cl1-Mg3	2.3392 (12)	Mg1-O1	2.047 (2)
Cl2-Mg3	2.3167 (14)	Mg1-O3	2.058 (2)
Cl3-Mg3	2.3374 (14)	Mg1-O5	2.060 (2)
Cl4-Mg3	2.3274 (13)	Mg1-O4	2.080 (2)
Cl5-Mg4	2.3467 (13)	Mg2-O12	2.046 (2)
Cl6-Mg4	2.3248 (15)	Mg2-O11	2.054 (2)
Cl7-Mg4	2.3330 (13)	Mg2-O9	2.057 (2)
Cl8-Mg4	2.3460 (13)	Mg2-O7	2.080 (2)
Mg1-O2	2.035 (2)	Mg2-O8	2.098 (2)
Mg1-O6	2.042 (2)	Mg2-O10	2.123 (2)
O2-Mg1-O6	91.03 (10)	O12-Mg2-O8	91.20 (9)
O2-Mg1-O1	91.54 (9)	O11-Mg2-O8	88.33 (9)
O6-Mg1-O1	91.79 (9)	O9-Mg2-O8	95.95 (9)
O2-Mg1-O3	87.90 (9)	O7-Mg2-O8	87.38 (9)
O6-Mg1-O3	91.77 (9)	O12-Mg2-O10	89.81 (9)
O1-Mg1-O3	176.40 (11)	O11-Mg2-O10	90.87 (9)
O2-Mg1-O5	94.07 (10)	O9-Mg2-O10	89.10 (9)
O6-Mg1-O5	174.78 (11)	O7-Mg2-O10	87.58 (9)
O1-Mg1-O5	86.96 (9)	O8-Mg2-O10	174.87 (10)
O3-Mg1-O5	89.53 (9)	Cl2-Mg3-Cl4	109.97 (5)
O2-Mg1-O4	174.92 (9)	Cl2-Mg3-Cl3	107.74 (5)
O6-Mg1-O4	87.90 (10)	Cl4-Mg3-Cl3	109.80 (5)
O1-Mg1-O4	93.46 (9)	Cl2-Mg3-Cl1	109.47 (5)
O3-Mg1-O4	87.17 (9)	Cl4-Mg3-Cl1	108.84 (5)
O5-Mg1-O4	87.12 (9)	Cl3-Mg3-Cl1	111.01 (5)
O12-Mg2-O11	177.49 (10)	Cl6-Mg4-Cl7	111.91 (5)
O12-Mg2-O9	88.60 (9)	Cl6-Mg4-Cl8	108.60 (5)
O11-Mg2-O9	89.00 (9)	Cl7-Mg4-Cl8	108.18 (5)
O12-Mg2-O7	90.82 (9)	Cl6-Mg4-Cl5	109.11 (5)
O11-Mg2-O7	91.62 (9)	Cl7-Mg4-Cl5	109.12 (5)
O9-Mg2-O7	176.63 (9)	Cl8-Mg4-Cl5	109.91 (5)

45159 measured reflections

 $R_{\rm int}=0.036$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -18 \rightarrow 18$

 $k=-15\rightarrow 15$

 $l = -24 \rightarrow 24$

7677 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0276P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.1249P]

 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

5986 reflections with $I > 2\sigma(I)$

Refinement of the Flack (1983) parameter with 6646 Friedel pairs led to a value of 0.49 (3); the crystal was thus assumed to be an inversion twin with equal components. Friedel pairs were averaged in the final refinement, and the absolute structure chosen was arbitrary. All H atoms were placed in calculated positions, with C–H distances of 0.93 Å and $U_{\rm iso} = 1.2U_{\rm eq}$ of the attached C atom, and thereafter treated as riding. A torsional parameter was refined for each methyl group.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

Figure 1

The atom-numbering scheme for cation-anion pair 1, with displacement ellipsoids shown at the 50% probability level. H atoms are not shown.

The atom-numbering scheme for cation-anion pair 2, with displacement ellipsoids shown at the 50% probability level. H atoms are not shown.

ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

- Adams, H., Rolfe, A. & Jones, S. (2005). Acta Cryst. E61, m1251-m1252.
- Barker, B. L. (2005). PhD dissertation, Louisiana State University, USA. URL: http://etd.lsu.edu/docs/available/etd-04132005-131235/.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hollander, F. J., Templeton, D. H. & Zalkin, A. (1973). Acta Cryst. B29, 1289– 1295.
- Krautscheid, H. & Vielsack, F. (1999). Z. Anorg. Allg. Chem. 625, 562–566.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pavanello, L., Visona, P., Bresadola, S. & Bandoli, G. (1994). Z. Kristallogr. 209, 946–949.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sobota, P., Pluzinski, T. & Lis, T. (1986). Bull. Pol. Acad. Sci. Chem. 33, 491–496.

Sobota, P. & Szafert, S. (1996). Inorg. Chem. 35, 1778–1781.